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SUMMARY

A Finnigan 4500 mass spectrometer was modified to perform direct liquid
introduction high-performance liquid chromatography-mass spectrometry (DLI-
HPLC-MS). The HPLC-MS analysis of some 25 pesticides,. including carbamates,
chlorinated carboxylic acids and methyl ureas is described. The qualitative appear-
ance of the spectra as well as detection limits are presented for both positive and
negative ion detection. In most cases DLI-HPLC-MS, using an 1:100 split, provided
molecular weight information with sub-microgram detection limits and greatly in-
creased specificity over HPLC detection.

INTRODUCTION

Analytical procedures for a number of pesticides are rather limited by virtue
of their thermal lability [gas chromatographic (GC) methods] and lack of sensitivity
and specificity (spectrophotometric methods). The thermal lability of the pesticides
has, in certain cases, been overcome through derivatization!-2. However, most work-
ers have attacked the problem of thermal lability through the use of high-perform-
ance liquid chromatography (HPLC). HPLC, while providing suitable separation of
most pesticides, is still hindered by the lack of a specific and sensitive detector for a
number of pesticides3¢. Ultraviolet (UV)? or electrochemical HPLC detection® often
provide adequate sensitivity, but do not provide the specificity necessary for analysis
of moderately complex sample matrices. Post-column fluorometric labeling tech-
niques’ sometimes overcome the selectivity problem; however, this solution is effec-
tive for only a limited number of pesticides. HPLC-mass spectrometry (MS) is a
method which can be used for the analysis of most pesticides, with adequate sensi-
tivity and excellent specificity.

A number of HPLC-MS interfaces have been developed for introducing the
HPLC effluent into the mass spectrometer’®~15, Of these, two are commercially avail-
able; the direct liquid introduction (DLI) interface and the mechanical transport
interface (moving belt). Pesticides analyzed on the moving belt include both carba-
mates and ureas!®!7. While some pesticides analyzed on the belt produce molecular
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ions, most show low mass fragments due to decomposition when the sample is de-
sorbed from the belt. For this reason, the DLI interface has proven successful in the
analysis of triazines and organophosphorus pesticides'®-1°. In DLI-HPLC-MS, the
sample is nebulized and does not require heating. Thus, less decomposition of the
analyte is observed. Research discussed here explore the applicability of DLI-
HPLC-MS to the analysis of carbamate, acid, oxime, urea, and acetanilide pesticides.

EXPERIMENTAL

The HPLC system consisted of a 6000A pump (Waters Assoc., Milford, MA,
U.S.A)), a UK-6 injector (Waters Assoc.) and a 440 UV detector (Waters Assoc.) at
254 nm. A C, g reversed-phase column with 5 um particle size and 15 cm x 4.6 mm
I.D. dimensions was used to perform the separations. The mobile phase was
acetonitrile-water (60:40) at a flow-rate of 1.5 ml/min.

The HPLC-MS interface was a Hewlett-Packard DLI probe (Hewlett-Pack-
ard, Palo Alto, CA, U.S.A.) which is the variable split type. The usual split ratio is
1:100 which allows approximately 10-30 ul/min of mobile phase to enter the mass
spectrometer.

The mass spectrometer was a Finnigan 4500 (Finnigan, Sunnyvale, CA,
U.S.A)) equipped with an INCOS data system. The instrument was modified for
HPLC-MS by the addition of a Vespel® desolvation chamber (Fig. 1). The desol-
vation chamber fits snugly on a removable ion volume and can be installed without
breaking vacuum to allow for changing from GC-MS to HPLC-MS and back to
GC-MS in a matter of minutes. The Vespel is an excellent insulator so no other
electrical isolation is needed between the source and DLI probe. Also, no water
cooling is required, since the Vespel is a poor conductor of heat. The source
pressure is controlled by the position of the DLI probe with respect to the desolvation
chamber. As the probe moves closer to the desolvation chamber the source pressure
increases. About 2-3 mm distance between the probe tip and desolvation changer is
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Fig. 1. Schematic drawing of Vespel desolvation chamber and ion volume used to interface the DLI probe
to the Finnigan 4500 mass spectrometer.
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used in normal operations. At this position, the source pressure was 0.65 torr and
the analyzer pressure was 2.5 - 10~ * torr as measured with a thermocouple and ion
gauge, respectively. No modifications to the probe vacuum lock were required. The
entrance hole for the glass-probe cup of a direct probe CI ion volume was drilled to
the same inside diameter as the remainder of the ion volume tube.

The mass spectrometer was operated in the CI mode at an electron energy of
100 eV, emission current of 0.3 mA, and a source temperature of 180°C. The instru-
ment was scanned from 150 to 500 a.m.u. at 2 sec per scan. The low mass of 150
a.m.u. was dictated by the numerous cluster ions observed at lower masses?°. The
HPLC solvent served as the CI reagent gas.

The pesticides were obtained from the Environmental Protection Agency Ref-
erence Standard Repository (Research Triangle Park, NC, U.S.A.). Standard solu-
tions were prepared in acetonitrile or acetonitrile-water (60:40). The stated purities
of these pesticides ranged from 95 to 100%. The solvents used were HPLC-grade
acetonitrile (Burdick & Jackson Labs., Muskegon, MI, U.S.A.) and reagent-grade
deionized water. The acetonitrile was filtered through a 0.5-um filter and the water
through a 0.45-um filter (Millipore, Bedford, MA, U.S.A)).

RESULTS AND DISCUSSION

Optimization of HPLC-MS interface

The DLI probe was adjusted daily to produce a straight 4-5 cm long solvent
jet. Once inserted into the mass spectrometer, the position of the probe was adjusted
to produce the best solvent cluster ions (m/z 83, 95 for positive ion CI, m/z 81 negative
ion CI) as the optimal setting for the sample?!. The resulting source pressure was
0.65 torr. The optimal source pressure (probe position), temperature, and repeller
voltage had been previously determined for a number of carbamate pesticides??.

Qualitative appearance of the mass spectra of the pesticides

Tables I, II, IIT and IV list the ions of greater than 5% relative abundance and
their proposed identity with both negative and positive ion detection for carbamate,
chlorinated carboxylic acid, methylurea and oxime, and acetanilide classes of pesti-
cides, respectively. These pesticides were analyzed individually with quantities of 1
to 5 pg injected on-column (10-100 ng into the source) to obtain acceptable quality
spectra and to assess the purity of the individual compounds. Each mass and intensity
assignment was obtained from averaging at least six scans and subtracting back-
ground on either side of the peak. The mass spectra usually exhibited molecular
weight information with few fragments and some solvent clustering. A more detailed
description of the mass spectra for the various classes of pesticides is given below.

Carbamate pesticides

All carbamates except benomyl exhibited protonated molecular ions [M + H]*
and sample-acetonitrile cluster ions [M + H+ CH3CN]* in the positive ion detection
mode (Table I). The carbamates can be represented by: R;-O-CO-NH-R,, where
R, and R; are the alkyl side chains or substituted aromatic rings. The fragment ions
observed for carbamates were usually formed through simple cleavages resulting in
the loss of R; or R, groups. The negative ion spectra for these pesticides usually
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displayed a [M — 1]~ ion with occasional [M + CN] ™ clusters. Again, cleavages of R;
and R, account for the fragment ions. Little sample-solvent clustering was observed
in negative ion detection mode.

Chliorinated carboxylic acids

The chlorinated carboxylic acid class of pesticides analyzed usually produced
[M+H]" ions and exhibited clustering to form [M+H+ CH3;CN]* ions and losses
of H,0, Cl and HCO, from the protonated molecular ion (Table II). For example,
the [M+H]" ion of dicamba was the base peak with fragments due to the loss of
H,0 (m/z 203), H,O and CH, (m/z 187), CO, (m/z 177), and HCI and CH, (m/z
169). Negative ion detection provided molecular weight information on all samples.
The negative ion spectra for these compounds usually yielded [M —H]~ and [M]~
anions, again with losses of CO,, H,0 and HCI. For example, dicamba exhibited
[M]~, [M—H]™ and [M—2]" anions with losses of H,O (m/z 202) and HCI (m/z
184). In general the acids were difficult to analyze in positive ion mode because of
the lack of sensitivity. Silvex and chloramben produced no positive ion signal.

Methylureas

The methylureas (Table IIT) exhibited relatively simple spectra in the positive
ion detection mode, with the [M + H]* ion being the base peak and a solvent-sample
cluster [M+H+ CH3;CN]"* as the only other signal detected. With negative ion de-
tection, the [M —H]~ anion was the base peak for diuron and fluometuron. These
samples exhibited weak fragment ions and in the case of linuron and diuron, an
[M+Cl]~ anion due to chloride attachment was detected.

Oxime, oxamimidate, acetamidate, and acetonilide pesticides

The positive ion spectra for the remaining pesticides consisted primarily of
[M+H]* and [M+H+ CH;CN]* ions with little fragmentation or other clustering
(Table IV). For example, propachlor exhibited an [M+H+ CH3;CN]* cluster ion
and a small [M+H—HCI]* fragment ion. The negative ion spectra exhibited
[M —H]" ions and clustering to form [M + CN]~ and [M +Cl]~. The few fragments
observed were formed from simple cleavages. For example, propachlor exhibited an
[M—1]" anion and one other fragment due to the loss of HCI from the [M—1}~
anion.

Detection limits

The approximate detection limits for the majority of the pesticides analyzed
were determined for both positive and negative ion detection (Table V). Mass spec-
trometry using the 1:100 probe split was unable to offer lower detection limit for
most pesticides over UV, electron-capture and fluorescence HPLC detection methods
for these pesticides. HPLC-MS did offer detection limits comparable to HPLC-UV
for propoxur and carbofuran’. Without the 1:100 split, (e.g. micro HPLC-MS) the
absolute detection limits can be lowered, but due to reduced load ability of the mi-
crocolumns, the actual matrix concentration sensitivity might remain un-
changed?3.2¢, However, the main advantage in the use of MS is the added specificity
in the analysis.

Detection limits were obtained by using ions in the molecular weight region
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TABLE V

DETECTION LIMITS FOR SELECTED PESTICIDES ANALYZED USING BOTH POSITIVE AND
NEGATIVE ION DETECTION WITH DLI PROBE AND APPROXIMATELY 1/100 SPLIT

—~ = Not detected.

Class Compound Detection limits*
Positive Ion Negative Ion
ion (ug) monitored ion (ug) monitored
Carbamates Carbaryl 0.04 202 0.6 161
BPMC 0.02 208 02 173
Propoxor 0.05 210 0.04 151
Chlorpropham 0.15 214 0.005 212
Carbofuran 0.05 222 0.03 163
Phenmedipham 40.0 301 0.5 299
Desmedipham 12.0 301 0.5 180
Asulam 30 231 0.6 155
Benomyl 0.5 159 0.5 190
Acids Dicamba 50 221 10 220
Silvex - - 5 197
Chloramben — - 10 169
2,4,5-T 75 296 5 208
24-D 60 262 15 174
Picloram 75 241 60 240
Oxime Oxamy! 2 220 5 293
Methomyl 1 163 5 161

* Amounts listed are quantities actually injected on column; only about 1-3% enters the mass
spectrometer.

if available; otherwise, the most significant fragment ion was used. The instrument
was operated in full scan mode and the selected ions were mapped with respect to
the various amounts injected on-column. The detection limit for a compound was
determined as the area response of the analyte at approximately three times noise.
Selected ion monitoring, which would greatly improve detection limits, was not per-
formed because the HPLC-MS technique would be used to search for a variety of
pesticides. The full scan detection limits would be more appropriate for evaluating
the HPLC-MS technique for environmental analysis.

Carbamates

The carbamate pesticides displayed a range of sensitivity in positive ion mode,
Detection limits ranged from 40 ug to 0.02 ug injected on-column. The broad range
of detection limits for these pesticides can be accounted by the variability in structure
of the carbamates analyzed. The pesticides asulam, phenmedipham and desmedi-
pham exhibited high detection limits, near 40 ug, while the other carbamates analyzed
have detection limits near 0.1-0.02 ug. Such variability in detection limits are com-
mon in chemical ionization processes. The selected ion current (Fig. 2) for a number
of carbamates is shown for three different quantities injected on-column. With posi-
tive ion detection, detection limits were determined by monitoring [M + H]* or other
structurally significant ions. Negative ion detection involved using low mass fragment
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Fig. 2. Selected ion chromatograms and total ion current, using positive ion detection, for three different
quantities of carbamates injected on-column.

100.0
Propoxur
miz 151
AN
f T T I [ T
5.0 Carbary!
miz 161

I T T T T T
59.0
Carbofuran
mfz 163
a r T T T T T
g 153
i
- 8pPMC
2 miz 173
ol A
e f T T T L !
64.1
Chlorpropham
mfz 212
AN a—
f T T 1 T
379.6 o TIC
0.5 ug inj. 0.05 ug inj.

3.5 min

Time {(min)

Fig. 3. Selected ion chromatograms and total ion current, using negative ion detection, for three different
quantities of carbamates injected on-column.
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ions because of the lack of intense high mass fragments. The negative ion detection
limits for the carbamates did not differ as greatly as in the positive ion case (0.6-
0.005 ug). Fig. 3 displays the negative ion traces for the same pesticides given in Fig.
2 at the same three concentrations. More interferences were detected when using
lower mass fragment ions to determine the presence of a particular pesticide. Positive
ion detection appeared to offer the best specificity (due to molecular weight infor-
mation) with reasonable sensitivity and would therefore be the method of choice for
the analysis of carbamate pesticides.
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